

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India

P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

Cir. No. 22/DIV/CAB/05

07 June 2023

To Cable Division and Utilities/SEBS, listed of purchasing organisations

Sub: Correction in amendment to Price Variation Clause for MV and EHV Cables wef Apr 2023

IEEMA recently published amended Price Variation Clause for MV and EHV Cables wef Apr 2023 vide Cir. No. 07/DIV/CAB/05 and 06/DIV/CAB/05 dated 08 May 2023. After publishing IEEMA found some corrections to be done in the below factor tables:

For EHV Cables -

Table: 3d (SMIF): Variation factor for Copper in Lead + Cu wire construction (CuFpb)

For MV Cables -

Table: H4 (c) 3.3 KV (E) Unscreened arm

And note added for Table: H5 (a) & Table: H5 (b) as "Fillers added in above factors"

The corrected factor tables are attached and request to all stakeholders to replace these tables with earlier published factor tables.

All other factor tables and guidelines remains unchanged as per Cir No. 07/DIV/CAB/05 and 06/DIV/CAB/05 dated 08 May 2023.

Director

Menella

Encl.: corrected factor tables for amended PV clause for MV Cables wef Apr 23.

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

TABLE : H4 (c) VARIATION FACTOR FOR STEEL WIRE ARMOUR (FeW)

THREE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

	3.3 KV (E)	3.3 KV (E)	6.6 KV (E)	11 KV (E) /	11 KV (UE)	22 KV (E)	33 KV (E)	33 KV (UE)
Nominal Cross	Unscreened	screened		6.6 KV (UE)				
Sectional Area in	arm	arm						
Sq. mm								
25	1.258	1.358	1.457	1.612	2.509	1.503	-	-
35	1.361	1.465	1.569	1.853	2.644	2.797	2.517	-
50	1.682	1.685	1.687	2.321	2.800	2.921	4.569	4.603
70	2.033	1.959	1.979	2.503	3.219	3.347	4.809	4.935
95	2.202	2.355	2.507	2.718	4.019	4.200	5.437	6.553
120	2.371	2.523	2.675	2.882	4.241	4.416	6.713	6.820
150	2.870	2.812	2.847	3.265	4.447	4.621	6.976	7.088
185	3.121	3.215	3.309	4.148	4.726	5.289	7.356	7.489
240	3.758	3.993	4.227	4.442	5.442	6.651	7.718	7.890
300	4.099	4.562	5.024	5.182	6.894	7.084	8.187	8.359
400	5.750	6.161	6.572	6.658	7.433	7.657	8.760	8.960
500	6.716	6.747	6.777	6.861	7.588	7.797	8.830	9.629
630	7.492	7.116	7.465	7.477	8.209	8.386	9.413	10.365

TABLE : H5 (a) VARIATION FACTOR FOR Polymer (CCFAL/CCFCu)

SINGLE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross	3.3 KV(E)	3.3 KV(E)	6.6 KV (E)	6.6 KV (UE)	11 KV	22 KV (E)	33 KV (E)	33 KV (UE)
Sectional Area	Unscreened	screened	ARM	/ 11 KV (E)	(UE)	ARM	ARM	ARM
(in Sq. mm)	ARM	ARM		ARM	ARM			
35	0.123	0.197	0.259	0.278	0.330	0.376	0.468	0.493
50	0.152	0.209	0.272	0.294	0.379	0.394	0.483	0.530
70	0.170	0.227	0.295	0.317	0.404	0.419	0.508	0.583
95	0.184	0.244	0.317	0.338	0.435	0.449	0.554	0.609
120	0.197	0.261	0.337	0.392	0.457	0.472	0.576	0.634
150	0.194	0.303	0.389	0.413	0.477	0.492	0.597	0.656
185	0.224	0.322	0.414	0.445	0.502	0.539	0.674	0.767
240	0.276	0.354	0.456	0.479	0.558	0.573	0.711	0.806
300	0.294	0.377	0.489	0.506	0.587	0.602	0.811	0.915
400	0.333	0.450	0.569	0.578	0.687	0.703	0.866	0.974
500	0.367	0.493	0.675	0.679	0.809	0.826	1.056	1.139
630	0.438	0.611	0.735	0.739	0.873	0.928	1.168	1.290
800	0.529	0.734	0.863	0.866	1.027	1.05	1.189	1.380
1000	0.648	0.880	1.031	1.035	1.138	1.158	1.402	1.619

Note: The above factors are for PVC and Zero Halogen low smoke (LSZH) and for PE factor, the above factor will be multiplied by 0.63 Fillers added in above factors

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

TABLE : H5 (a) VARIATION FACTOR FOR Polymer (CCFAL/CCFCu)

SINGLE CORE UNARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

CINCLE CONE ON MANOCRES ALL E MODEL MED SIGNO SO KY TO WERK ON DEEDS WITH ANY CONCENTRAL								
Nominal Cross	3.3 KV(E)	3.3 KV(E)	6.6 KV (E)	6.6 KV (UE)	11 KV	22 KV (E)	33 KV (E)	33 KV (UE)
Sectional Area	Unscreened	screened	ARM	/ 11 KV (E)	(UE)	ARM	ARM	ARM
(in Sq. mm)	ARM	ARM		ARM	ARM			
35	0.158	0.191	0.224	0.252	0.323	0.342	0.361	0.380
50	0.177	0.209	0.240	0.269	0.342	0.361	0.520	0.539
70	0.198	0.232	0.265	0.296	0.370	0.391	0.551	0.572
95	0.233	0.261	0.288	0.318	0.396	0.450	0.582	0.636
120	0.253	0.282	0.310	0.342	0.454	0.477	0.613	0.636
150	0.269	0.299	0.328	0.361	0.476	0.500	0.638	0.662
185	0.292	0.323	0.354	0.420	0.508	0.532	0.719	0.743
240	0.322	0.371	0.419	0.455	0.547	0.572	0.766	0.791
300	0.355	0.408	0.461	0.490	0.585	0.610	0.863	0.888
400	0.423	0.474	0.524	0.539	0.683	0.711	0.932	0.960
500	0.477	0.553	0.629	0.635	0.743	0.825	1.059	1.141
630	0.548	0.620	0.691	0.697	0.866	0.898	1.144	1.176
800	0.672	0.749	0.826	0.833	1.016	1.051	1.320	1.355
1000	0.789	0.877	0.964	0.964	1.099	1.200	1.488	1.589

Note: The above factors are for PVC and Zero Halogen low smoke (LSZH) and for PE factor the above factor will be multiplied by 0.63 Fillers added in above factors

TABLE : H5 (b) VARIATION FACTOR FOR POLYMER (CCFAI / CCFCu)

THREE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross Sectional Area	3.3 KV (E) Unscreened ARM	3.3 KV (E) screened ARM	6.6 KV (E) ARM	6.6 KV (UE) / 11 KV (E) ARM	11 KV (UE) ARM	22 KV (E) ARM	33 KV (E) ARM	33 KV (UE) ARM
(in Sq. mm	0.274	0.624	0.000	1 1 1 2	1.604	1 702		
35	0.374	0.634	0.990	1.142	1.604	1.782	-	
50	0.445	0.702	1.119	1.260	1.834	2.046	2.864	3.070
70	0.547	0.863	1.290	1.396	2.011	2.284	3.219	3.380
95	0.594	0.990	1.440	1.647	2.269	2.428	3.367	3.721
120	0.732	1.214	1.692	1.877	2.498	2.715	3.646	4.020
150	0.812	1.355	1.906	2.061	2.767	2.931	3.927	4.216
185	0.960	1.589	2.086	2.406	3.028	3.180	4.166	4.529
240	1.130	1.832	2.484	2.744	3.398	3.580	4.589	4.917
300	1.219	2.201	2.912	3.161	3.840	4.016	5.029	5.325
400	1.313	2.561	3.530	3.664	4.353	4.666	5.736	5.911
500	1.652	3.138	3.925	3.971	4.621	4.878	5.913	6.625
630	1.949	3.774	4.487	4.982	5.225	5.477	6.696	7.445

Note: The above factors are for PVC and Zero Halogen low smoke (LSZH) and for PE factor the above factor will be multiplied by 0.63 Fillers added in above factors

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Cir. No. 07/DIV/CAB/05

08 May 2023

Effective from: 01 April 2023

To Cable Division and Utilities/SEBS, listed of purchasing organisations

Sub: Amendment to Price Variation Clause for MV Cables

IEEMA MV Cable PV formula is applicable from Sep 2019. With the coming demand for cables; Cable manufacturers' requested IEEMA to publish following missing factors from formula document of MV Cable effective from Sep 2019; since some of the users were procuring such cables and demanding these factors and also for the correction in the SMIF factor for Copper Wire Metallic Screen for MV and EHV cables.

IEEMA Cable Technical committee discussed the subject in depth and IEEMA collected the variation factors and finalised in consensus. The average factors are tabled in annexure which are effective from 01 Apr 2023 and accordingly modified the formulae, attached with circular.

New evolved variation factors and corrections in formulae are as below:

- Variation factors for Polymer (CCFAL/CCFCu), Table: H5 (a) are added for Single core unarmored XLPE insulated 3.3 to 33 KV Power cables with AI / Cu conductor
- 2. Variation factors for 33 KV (UE) and 3.3 KV (screened) are added
- 3. The formula for copper screen factor given in IEEMA MV Cable PV clause for all formulae wef Sep 19 is for copper wires only and copper tape binder if provided, its area would be additional.

The SMIF, weight factor for Copper Wire Metallic Screen has been modified as under:

SMIF = $(A \times D \times LF)/1000$, where D = Density (= 8.89 for Cu), LF = Lay Factor (=1.07, for Copper Wire Metallic Screen and counter helix tape)

- 4. Considering the fluctuations in the prices; and as suggested by members, IEEMA will be publishing a separate price for XLPE for EHV Cables (Above 66 KV) in IEEMA Cable price variation circular from 01 Apr 2023 onwards. This price will applicable for XLPE in all EHV Cable (Above 66 KV) formulae from 01 Apr 2023 onwards. And correction/change in existing "XLPE HV Cable" being mentioned in IEEMA Price circulars with "XLPE MV Cable" applicable for MV cables.
- 5. For the better clarity and application of prices, it is also agreed upon to change/replace the existing PVC grades "CW 22" & "HR-11" being mentioned in IEEMA Price circulars with generic PVC names as under;

CW 22 to be changed to "PVC" & HR 11 to be changed to "HR PVC"

Effective from: 01 April 2023

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

As discussed and agreed in consensus, the understanding for above generic PVC grades is that "PVC" will be considered for PVC insulation and PVC sheath of General Purpose PVC insulated LV cables as per IS 1554 (I) suitable max conductor temperature of 70 °C, whereas "HRPVC" will be considered for Heat Resisting PVC insulation and Heat Resisting PVC sheath of HRPVC insulated LV Cables as per IS 1554 (I) and also for Heat Resisting PVC sheath of XLPE insulated LV cables as per IS 7098 (I) & Heat Resisting PVC sheath of XLPE insulated HT Cables as per IS 7098 (Part-2).

- 6. There is regular requirement of 3.3 kV DC cables for Metro Projects, with Galvanized Steel (GS) wire/strip armouring, in view of this, Variation Factors for GS wire/ Strip armouring for Single core 3.3 kV cables are collected and the table of average variation factor is evolved.
- As suggested by stake holders and in consensus with IEEMA Cable Tech committee, prices of Steel for armouring for following thickness are published in IEEMA Cable PVC from 01 Jan 2023 and are effective/applicable from 01 Jan 2023.

Round wire 2.0 mm dia, Round wire 2.5 mm dia, Round wire 3.15 mm dia, Round wire 4.0 mm dia

We are enclosing amended price variation clause for MV Cables along with applicable table of variation factors and additional table of variation factors which are effective from 01 Mar 2023. We recommend all stakeholders to incorporate these changes in all the contracts/tenders henceforth for settlement of price variation from 01 Apr 2023 onwards.

Manuel 18

Director

Encl.: Amended PV clause for MV Cables along with table of variation Factors

Effective from: 01 April 2023

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Material Price Variation Clause for 3.3-33 KV XLPE Insulated Armoured Single & Three core Screen Cables

The Price quoted/confirmed is based on the input cost of raw materials/components as on the date of quotation, and the same is deemed to be related to the prices of raw materials as specified in the price variation clause given below. In case of any variation in these prices, the price payable shall be subject to adjustment up or down in accordance with the formulae provided in this document.

Terms used in price variation formulae:

- P Price payable as adjusted in accordance with above appropriate formula (in Rs/Km)
- Po Ex-Works Price quoted/confirmed (in Rs/Km)

ALUMINIUM

- AIF Variation factor for Aluminium
- Al Price of Aluminum. This price is as applicable **one** month prior to the date of delivery.
- Alo Price of Aluminium. This price is as applicable **one** month prior to the date of tendering.

COPPER

- CuF Variation factor for copper
- Cu Price of CC copper rods. This price is as applicable **one** month prior to the date of delivery.
- Cuo Price of CC copper rods. This price is as applicable **one** month prior to the date of tendering.

POLYMER COMPOUND (PVC/PE/Zero Halogen low smoke)

- PVC Price of PVC Compound / PE / Zero Halogen low smoke. This price is as applicable on **one** month prior to the date of delivery.
- PVCo Price of PVC Compound / PE / Zero Halogen low smoke. This price is as applicable on **one** month prior to the date of tendering.

(the relevant price of Polymer Compound is to be selected depending upon the type of compound used for the cable)

- CCFAI Variation factor for PVC compound / PE / Zero Halogen low smoke for aluminum conductor cable.
- CCFCu Variation factor for PVC compound / PE / Zero Halogen low smoke for copper conductor cable.

XLPE COMPOUND

Cc price of XLPE compound. This price is as applicable on first working day of the month, **one** month prior to the date of delivery.

Effective from: 01 April 2023

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 P +91 22 2493 0532 F +91 22 2493 2705 E mumbai@ieema.org W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Cco Price of XLPE compound. This price is as applicable on first working day of the month, **one** month prior to the date of tendering.

XLFAL Variation factor for XLPE compound for aluminum conductor cable.

XLFCU Variation factor for XLPE compound for Copper conductor cable.

STEEL

FeF Variation factor for steel

FeW Variation factor for round wire steel armouring

Fe Price of Steel Strips/steel wire. This price is as applicable on the first working day of the month,

one month prior to the date of delivery.

Feo Price of steel strips/steel wire. This price is as applicable on first working day of the month, one

month prior to the date of tendering

COPPER TAPE

SMIFS Variation factor for Copper tape

SMIF1 Price of CC copper rods. This price is as applicable **one** month prior to the date of delivery.

SMIFO Price of CC copper rods. This price is as applicable **one** month prior to the date of tendering.

The above prices and indices are as published by IEEMA vide Circular reference IEEMA (PVC)/CABLE (R-1)/--/-- for the month i.e. **one** month prior to the date of tendering.

The date of delivery is the date on which the cable is notified as being ready for inspection/dispatch (in the absence of such notification, date of manufacturer's dispatch note is to be considered as the date of delivery) or contracted delivery date (including any agreed extension thereto) whichever is earlier.

Notes: All prices of raw materials are exclusive of GST amount. The details of prices are as under:

- 1. Price of Aluminium is LME average Cash SELLER Settlement price of Primary Aluminium in US\$ per MT as published by London Metal Bulletin (LME) including Premium for Aluminium Ingot in US\$ per MT is converted in Indian Rs./MT.
- 2. Price of PVC Compound (in Rs/MT) is the ex-works price, as quoted by the manufacturer/s
- 3. Price of XLPE Compound (in Rs/MT) is the ex-works price, as quoted by the manufacturer/s
- 4. Price of Polymer Compound (in Rs/MT) is the ex-work price, as quoted by the manufacturer/s
- 5. Price of Zero halogen low smoke (LSZH) (in Rs/MT) is the ex-work price, as quoted by the manufacturer/s
- 6. Price of CC copper rods (in Rs/MT) is ex-works price as quoted by the primary producer
- 7. Price of galvanized steel strip / steel wire (in Rs/MT) is ex-works price as quoted by the manufacturer for Round steel Wire and Flat steel strip (the relevant price of steel strip or steel wire is to be selected depending upon the type of armouring of the cable)

Effective from: 01 April 2023

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532 F +91 22 2493 2705 E mumbai@ieema.org W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Price variation formulae

G. For Aluminium conductor XLPE insulated 3.3 to 33 kV Single Core Armoured power cables

P = Po + AIF (AI – Alo) + XLFAL(CC-Cco)+ SMIFS (SMIF1-SMIF0) + CCFAI (PVCc – PVCco) For Single Core unarmoured cables Aluminium factor (AIF) shall be referred from Table ALP

Table References:

ALP	Aluminium conductor Factor in single core (for unarmoured cable); AIF
H1	Aluminium Armour Factor for Armour with Al Cond.
H2(a)	XLPE Compound Factor ; XLFAI
H3(a)	Copper Tape Factor ; SMIFS
H5(a)	Polymer factor for Single core cable ; CCFAI

Note: For cases where specific Earth Fault Current through Screen is required, Screen area as approved by the customer in Datasheet/Earth Fault Current calculation of Screen shall be used to derive SMIF as below:

If A= Area of Metallic Screen in Approved Datasheet / Calculation Sheet
D= Density= 8.89 for Cu. & 2.703 for Al; LF = Lay Factor (=1.07, for Copper Wire Metallic Screen and counter helix tape)

$SMIF = (A \times D \times LF)/1000$

H. For Copper conductor XLPE insulated 3.3 to 33 kV Single Core Armoured power cables

P = Po + CuF (Cu - Cu0) + XLFCu(CC-Cco)+ SMIFS (SMIF1-SMIF0) + AIF(AI-Alo) + CCFAI (PVCc - PVCco)

For Single Core unarmoured cables Aluminium factor (AIF) shall be 0

Table References:

CuP	Copper conductor Factor in single core; CuF
H2(a)	XLPE Compound Factor; XLFCu
H3(a)	Copper Tape Factor ; SMIFS
H4(a)	Aluminium Armour factor; AlF
H5(a)	Polymer factor for Single core cable; CCFCu

Note: For cases where specific Earth Fault Current through Screen is required, Screen area as approved by the customer in Datasheet/Earth Fault Current calculation of Screen shall be used to derive SMIF as below If A= Area of Metallic Screen in Approved Datasheet / Calculation Sheet D= Density= 8.89 for Cu. & 2.703 for Al; LF = Lay Factor (=1.07, for Copper Wire Metallic Screen and counter helix tape)

SMIF = $(A \times D \times LF)/1000$

Effective from: 01 April 2023

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532 F +91 22 2493 2705 E mumbai@ieema.org W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

I. For Aluminium conductor XLPE insulated 3.3 to 33 kV Three Core Armoured power cables

P = Po + AIF (AI - AIo) + XLFAL(CC-Cco)+ SMIF (SMIF1-SMIF0) + FeF(FeF1-FeF0) + CCFAI (PVCc - PVCco)

For unarmoured Three Core cables, Steel Armour factor (FeF for Strip & FeW for Wire) shall be 0

Table References:

ALP	Aluminium conductor Factor in three core; AIF
H2(b)	XLPE Compound Factor ; XLFAI
H3(b)	Copper Tape Factor ; SMIF
H4(b)	Steel Strip Armour Factor ; FeF
H4(c)	Steel Wire Armour ; FeW
H5(b)	Polymer factor for Three Core cable ; CCFAI

Note: For cases where specific Earth Fault Current through Screen is required, Screen area as approved by the customer in Datasheet/Earth Fault Current calculation of Screen shall be used to derive SMIF as below

If A= Area of Metallic Screen in Approved Datasheet / Calculation Sheet
D= Density= 8.89 for Cu. & 2.703 for Al; LF = Lay Factor (=1.07, for Copper Wire Metallic Screen and counter helix tape)

 $SMIF = (A \times D \times LF)/1000$

J. For Copper conductor XLPE insulated 3.3 to 33 kV Three Core Armoured power cables

P = Po + CuF (Cu - Cuo) + XLFCu(CC-Cco)+ SMIF(SMIF1-SMIF0) + FeF(FeF1-FeF0) + CCFCu (PVCc - PVCco)

For Three Core unarmoured cables, Steel Armour factor (FeF for Strip & FeW for Wire) shall be 0

Table References:

CuP	Copper conductor Factor in three core; Cur
H2(b)	XLPE Compound Factor; XLFCu
H3(b)	Copper Tape Factor; SMIF
H4(b)	Steel Strip Armour Factor; FeF
H4(c)	Steel Wire Armour Factor; FeW
H5(b)	Polymer factor for Three Core cable; CCFCu

Note: For cases where specific Earth Fault Current through Screen is required, Screen area as approved by the customer in Datasheet/Earth Fault Current calculation of Screen shall be used to derive SMIF as below If A= Area of Metallic Screen in Approved Datasheet / Calculation Sheet

D= Density= 8.89 for Cu. & 2.703 for Al; LF = Lay Factor (=1.07, for Copper Wire Metallic Screen and counter helix tape)

 $SMIF = (A \times D \times LF)/1000$

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India

Effective from: 01 April 2023

P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

K. For Aluminium conductor XLPE insulated 3.3 kV Single Core Armoured power cables

P = Po + AIF(AI - Alo) + XLFAL(CC-Cco) + CCFAI(PVCc - PVCco) + FeF(FeF1-FeF0)

For Single Core unarmoured cables Aluminium factor (AIF) shall be referred from Table ALP

Table References:

ALP	Aluminium conductor Factor in single core (for unarmoured cable); AIF
H1	Aluminium Armour Factor for Armour with Al Cond.
H2(a)	XLPE Compound Factor; XLFAI
H4(d)	Steel Strip Armour Factor; FeF / Steel Wire Armour Factor; FeW for 3.3KV cables
H5(a)	Polymer factor for Single core cable ; CCFAI

Note: For cases where specific Earth Fault Current through Screen is required, Screen area as approved by the customer in Datasheet/Earth Fault Current calculation of Screen shall be used to derive SMIF as below

If A= Area of Metallic Screen in Approved Datasheet / Calculation Sheet
D= Density= 8.89 for Cu. & 2.703 for Al; LF = Lay Factor (=1.07, for Copper Wire Metallic Screen and counter helix tape) SMIF = (A x D x LF)/1000

L. For Copper conductor XLPE insulated 3.3 kV Single Core Armoured power cables

P = Po + CuF (Cu - Cu0) + XLFCu(CC-Cco) + AlF(Al-Alo) + CCFAI (PVCc - PVCco) + FeF(FeF1-FeF0)

For Single Core unarmoured cables Aluminium factor (AIF) shall be 0

Table References:

CuP	Copper conductor Factor in single core ; CuF
H2(a)	XLPE Compound Factor ; XLFCu
H4(a)	Aluminium Armour factor ; AlF
H4(d)	Steel Strip Armour Factor; FeF / Steel Wire Armour Factor; FeW for 3.3KV cables
H5(a)	Polymer factor for Single core cable ; CCFCu

Note: For cases where specific Earth Fault Current through Screen is required, Screen area as approved by the customer in Datasheet/Earth Fault Current calculation of Screen shall be used to derive SMIF as below

If A= Area of Metallic Screen in Approved Datasheet / Calculation Sheet
D= Density= 8.89 for Cu. & 2.703 for Al; LF = Lay Factor (=1.07, for Copper Wire Metallic Screen and counter helix tape) SMIF = (A x D x LF)/1000

The PV factor for metallic screen will be computed based on approved screen area in case of cables having a specific short circuit capacity

Authorized Signatory

7 | Page of 18

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Effective from: 01 April 2023

TABLE ALP

VARIATION FACTOR FOR ALUMINIUM (AIF)

POWER CABLES WITH ALUMINIUM CONDUCTOR (EXCLUDING SINGLE CORE ARMOURED CABLES)

Nominal Cross Sectional Area (in Sq. mm.)	1 core	3 core
25	0.073	0.219
35	0.101	0.302
50	0.137	0.410
70	0.197	0.593
95	0.274	0.821
120	0.346	1.036
150	0.425	1.279
185	0.533	1.605
240	0.703	2.099
300	0.879	2.635
400	1.126	3.374
500	1.418	4.256
630	1.828	5.494
800	2.340	7.018
1000	2.951	8.834

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Effective from: 01 April 2023

TABLE CUP

VARIATION FACTOR FOR COPPER CONDUCTOR (CUF)

POWER CABLES WITH COPPER CONDUCTOR

Nominal Cross Sectional Area (in Sq. mm.)	1 core	3 core
25	0.240	0.720
35	0.332	0.993
50	0.451	1.348
70	0.648	1.950
95	0.901	2.700
120	1.138	3.407
150	1.398	4.207
185	1.753	5.279
240	2.312	6.904
300	2.891	8.667
400	3.703	11.097
500	4.664	13.998
630	6.012	18.070
800	7.696	23.082
1000	9.706	29.055

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India

Effective from: 01 April 2023

P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Table : H1 VARIATION FACTOR FOR ALUMINIUM (AIF)

ALUMINIUM ARMOURED SINGLE CORE XLPE INSULATED 3.3 TO 33 KV CABLES

Nominal Cross	Alur	minium Facto	or for Alum	inium Armoui	ed Cable w	ith Aluminiu	ım Conducto	or
Sectional Area (in Sq. mm.)	3.3 KV(E) unscreened Arm	3.3 KV(E) screened Arm	6.6 KV (E)	11 KV (E)/ 6.6 KV (UE)	11 KV (UE)	22 KV (E)	33 KV (E)	33 KV (UE)
35	0.251	0.268	0.284	0.301	0.344	0.358	0.473	0.528
50	0.312	0.324	0.336	0.352	0.397	0.408	0.672	0.695
70	0.385	0.397	0.409	0.423	0.469	0.501	0.723	0.775
95	0.476	0.488	0.500	0.518	0.637	0.656	0.856	0.883
120	0.561	0.574	0.586	0.601	0.726	0.744	0.949	0.985
150	0.653	0.666	0.678	0.696	0.823	0.842	1.050	1.094
185	0.773	0.785	0.797	0.893	0.949	0.965	1.183	1.247
240	0.997	1.030	1.063	1.083	1.139	1.154	1.387	1.463
300	1.209	1.240	1.271	1.283	1.333	1.307	1.753	1.877
400	1.438	1.497	1.556	1.565	1.620	1.636	2.046	2.217
500	1.873	1.887	1.901	1.910	2.110	2.128	2.484	2.613
630	2.337	2.349	2.361	2.369	2.580	2.595	2.978	3.147
800	3.007	3.039	3.071	3.080	3.145	3.163	3.588	3.789
1000	3.737	3.739	3.741	3.749	3.804	3.822	4.565	4.891

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India

Effective from: 01 April 2023

P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

TABLE : H2 (a) VARIATION FACTOR FOR XLPE(XLFAI/XLFCu)

SINGLE CORE ARMOURED /UNARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross-		XLPE Factor for Armoured/ Unarmoured Cable with AL/CU Conductor										
Sectional Area (in Sq. mm.)	3.3 KV(E) unscreened Arm	3.3 KV(E) screened Arm	6.6 KV (E)	, , ,		22 KV (E)	33 KV (E)	33 KV (UE)				
25	0.110	0.117	0.131	0.170	0.279	-	-	-				
35	0.122	0.129	0.137	0.175	0.284	0.317	0.522	0.575				
50	0.135	0.144	0.151	0.191	0.307	0.341	0.563	0.620				
70	0.155	0.165	0.172	0.215	0.342	0.379	0.615	0.678				
95	0.174	0.185	0.193	0.241	0.377	0.417	0.670	0.732				
120	0.192	0.205	0.212	0.262	0.407	0.449	0.713	0.785				
150	0.209	0.223	0.229	0.283	0.437	0.481	0.757	0.832				
185	0.228	0.244	0.250	0.308	0.471	0.518	0.809	0.888				
240	0.255	0.271	0.279	0.343	0.519	0.569	0.883	0.961				
300	0.280	0.296	0.322	0.372	0.560	0.613	0.943	1.030				
400	0.326	0.345	0.392	0.420	0.625	0.683	1.041	1.133				
500	0.388	0.407	0.461	0.469	0.694	0.757	1.142	1.236				
630	0.467	0.490	0.520	0.529	0.777	0.845	1.265	1.356				
800	0.567	0.595	0.593	0.602	0.874	0.949	1.407	1.494				
1000	0.656	0.688	0.665	0.660	0.955	1.036	1.525	1.624				

Note: XLPE factors include Semicons for Conductor & Insulation screen

Effective from: 01 April 2023

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

TABLE – H2 (b) VARIATION FACTOR FOR XLPE (XLFAI/XLFCu)

THREE CORE ARMOURED /UNARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross- Sectional Area	3.3 KV unscreened Arm	3.3 KV screened Arm	6.6 KV (E) ARM	6.6 KV (UE)/ 11 KV (E) ARM	11 KV (UE) ARM	22 KV (E) ARM	33 KV (E) ARM	33 KV (UE) ARM
(in Sq. mm)								
25	0.315	0.315	0.394	0.511	0.838	-	-	-
35	0.339	0.350	0.427	0.545	0.880	0.982	1.638	-
50	0.378	0.387	0.474	0.600	0.957	1.065	1.751	1.858
70	0.435	0.445	0.541	0.679	1.067	1.183	1.916	2.034
95	0.489	0.499	0.604	0.755	1.171	1.295	2.071	2.194
120	0.537	0.554	0.661	0.822	1.265	1.396	2.210	2.355
150	0.585	0.601	0.719	0.890	1.359	1.497	2.350	2.494
185	0.642	0.660	0.784	0.968	1.468	1.614	2.513	2.665
240	0.717	0.734	0.873	1.074	1.615	1.773	2.732	2.882
300	0.781	0.804	1.006	1.167	1.744	1.928	2.919	3.089
400	0.886	0.910	1.227	1.314	1.948	2.130	3.229	3.399
500	0.956	1.085	1.421	1.446	2.148	2.381	3.588	3.689
630	1.129	1.285	1.582	1.609	2.382	2.630	3.940	4.068

Note: XLPE factors include Semicons for Conductor & Insulation screen

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

Effective from: 01 April 2023

TABLE - H3 (a)

VARIATION FACTOR FOR COPPER TAPE (SMIFS)

SINGLE CORE ARMOURED /UNARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross- Sectional Area	3.3 KV Screened	6.6 KV (E)	6.6 KV (UE) / 11 KV (E)	11 KV (UE)	22 KV (E)	33 KV (E)	33 KV (UE)
in sq.mm.	ARM	ARM	ARM	ARM	ARM	ARM	ARM
35	0.016	0.018	0.020	0.025	0.026	0.016	0.035
50	0.016	0.019	0.022	0.026	0.028	0.035	0.038
70	0.020	0.022	0.024	0.029	0.030	0.037	0.040
95	0.022	0.024	0.026	0.031	0.032	0.039	0.043
120	0.022	0.025	0.028	0.032	0.034	0.041	0.045
150	0.025	0.027	0.029	0.034	0.035	0.042	0.046
185	0.027	0.029	0.031	0.036	0.038	0.045	0.049
240	0.030	0.032	0.034	0.039	0.040	0.047	0.052
300	0.034	0.035	0.036	0.043	0.043	0.050	0.054
400	0.039	0.040	0.041	0.046	0.047	0.054	0.062
500	0.045	0.045	0.045	0.050	0.051	0.058	0.066
630	0.048	0.049	0.050	0.054	0.056	0.063	0.071
800	0.055	0.055	0.055	0.060	0.061	0.068	0.077
1000	0.056	0.060	0.058	0.065	0.066	0.073	0.082

Effective from: 01 April 2023

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

TABLE – H3 (b) VARIATION FACTOR FOR COPPER TAPE (SMIF)

THREE CORE ARMOURED /UNARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross- Sectional Area	3.3 KV Screened	6.6 KV (E)	6.6 KV (UE) / 11 KV (E)	11 KV (UE)	22 KV (E)	33 KV (E)	33 KV (UE)
in sq.mm.	ARM	ARM	ARM	ARM	ARM	ARM	
35	0.049	0.055	0.061	0.072	0.079	-	-
50	0.053	0.059	0.065	0.076	0.083	0.104	0.123
70	0.059	0.065	0.071	0.082	0.090	0.111	0.130
95	0.065	0.071	0.077	0.088	0.096	0.117	0.137
120	0.071	0.077	0.083	0.094	0.101	0.123	0.144
150	0.076	0.082	0.088	0.099	0.106	0.128	0.149
185	0.082	0.088	0.094	0.105	0.113	0.134	0.157
240	0.091	0.097	0.103	0.114	0.121	0.143	0.166
300	0.102	0.106	0.110	0.122	0.129	0.150	0.174
400	0.120	0.122	0.124	0.135	0.142	0.164	0.198
500	0.134	0.135	0.136	0.147	0.155	0.176	0.211
630	0.149	0.149	0.149	0.160	0.168	0.190	0.228

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India

Effective from: 01 April 2023

P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

TABLE : H4 (a) VARIATION FACTOR FOR ALUMINIUM (AIF)

SINGLE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH Cu CONDUCTOR

Nominal Cross Sectional Area (in Sq. mm.)	a									
(iii 3q. iiiii.)	3.3 KV(E) unscreened Arm	3.3 KV(E) screened Arm	6.6 KV (E)	11 KV (E)/ 6.6 KV (UE)	11 KV (UE)	22 KV (E)	33 KV (E)	33 KV (UE)		
35	0.153	0.170	0.187	0.204	0.247	0.258	0.372	0.426		
50	0.179	0.191	0.203	0.220	0.262	0.275	0.425	0.456		
70	0.196	0.208	0.219	0.233	0.278	0.311	0.444	0.501		
95	0.213	0.225	0.237	0.254	0.373	0.392	0.470	0.523		
120	0.228	0.241	0.253	0.268	0.393	0.410	0.488	0.545		
150	0.243	0.256	0.269	0.287	0.414	0.432	0.504	0.567		
185	0.261	0.273	0.285	0.381	0.437	0.455	0.526	0.600		
240	0.324	0.357	0.389	0.410	0.465	0.480	0.556	0.633		
300	0.365	0.397	0.428	0.440	0.490	0.510	0.737	0.834		
400	0.432	0.452	0.471	0.480	0.536	0.552	0.783	0.895		
500	0.489	0.503	0.517	0.526	0.726	0.744	0.844	0.955		
630	0.544	0.556	0.568	0.572	0.787	0.801	0.902	1.034		
800	0.706	0.747	0.787	0.797	0.862	0.880	0.982	1.111		
1000	0.824	0.845	0.865	0.867	0.923	0.940	1.324	1.504		

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India

Effective from: 01 April 2023

P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

TABLE: **H4** (b)

VARIATION FACTOR FOR STEEL STRIP ARMOUR (FeF)

THREE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross		3.3 KV (E)	6.6 KV	11 KV (E) / 6.6 KV (UE)	11 KV (UE)	22 KV (E)	33 KV (E)	33 KV
Sectional Area Sq. mm.	unscreened arm	screened arm	(E)	0.6 KV (UE)				(UE)
25	0.551	0.553	0.604	0.656	0.814	i	-	-
35	0.645	0.645	0.645	0.731	0.879	0.937	-	1
50	0.675	0.684	0.703	0.761	0.937	0.966	1.181	1.301
70	0.761	0.764	0.761	0.849	0.996	1.055	1.289	1.393
95	0.820	0.828	0.849	0.907	1.083	1.113	1.348	1.454
120	0.879	0.924	0.907	0.966	1.142	1.172	1.406	1.531
150	0.966	0.988	0.966	1.055	1.201	1.259	1.494	1.592
185	1.025	1.051	1.055	1.113	1.259	1.318	1.553	1.668
240	1.142	1.147	1.142	1.231	1.377	1.406	1.641	1.760
300	1.231	1.258	1.259	1.318	1.465	1.524	1.758	1.852
400	1.348	1.402	1.406	1.435	1.582	1.641	1.876	1.990
500	1.454	1.500	1.573	1.642	1.714	1.758	2.095	2.100
630	1.632	1.680	1.745	1.943	1.889	1.918	2.150	2.280

TABLE : H4 (c) VARIATION FACTOR FOR STEEL WIRE ARMOUR (FeW)

THREE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

	3.3 KV (E)	3.3 KV (E)	6.6 KV (E)	11 KV (E) /	11 KV (UE)	22 KV (E)	33 KV (E)	33 KV (UE)
Nominal Cross	Unscreened	screened		6.6 KV (UE)				
Sectional Area in	arm	arm						
Sq. mm								
25	1.258	1.358	1.457	1.612	2.509	1.503	-	-
35	1.361	1.465	1.569	1.853	2.644	2.797	2.517	-
50	1.682	1.685	1.687	2.321	2.800	2.921	4.569	4.603
70	1.938	1.959	1.979	2.503	3.219	3.347	4.809	4.935
95	2.202	2.355	2.507	2.718	4.019	4.200	5.437	6.553
120	2.371	2.523	2.675	2.882	4.241	4.416	6.713	6.820
150	2.776	2.812	2.847	3.265	4.447	4.621	6.976	7.088
185	3.121	3.215	3.309	4.148	4.726	5.289	7.356	7.489
240	3.758	3.993	4.227	4.442	5.442	6.651	7.718	7.890
300	4.099	4.562	5.024	5.182	6.894	7.084	8.187	8.359
400	5.750	6.161	6.572	6.658	7.433	7.657	8.760	8.960
500	6.716	6.747	6.777	6.861	7.588	7.797	8.830	9.629
630	6.767	7.116	7.465	7.477	8.209	8.386	9.413	10.365

501, Kakad Chambers 132, Dr. A. B. Road, Worli, Mumba i 400 018 India

Effective from: 01 April 2023

P +91 22 2493 0532
 F +91 22 2493 2705
 E mumbai@ieema.org
 W www.ieema.org

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

TABLE: H4 (d)

VARIATION FACTOR FOR STEEL WIRE ARMOUR (FeW/FeF)

SINGLE CORE ARMOURED XLPE INSULATED 3.3 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross section	Single Co	re 3.3 kV
area in sq. mm	FeF	FeW
25	0.276	0.385
35	0.303	0.409
50	0.314	0.442
70	0.331	0.528
95	0.341	0.584
120	0.369	0.629
150	0.395	0.676
185	0.423	0.731
240	0.464	0.92
300	0.504	0.982
400	0.573	1.215
500	0.613	1.359
630	0.696	1.518

TABLE : H5 (a) VARIATION FACTOR FOR Polymer (CCFAL/CCFCu)

SINGLE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross	3.3 KV(E)	3.3 KV(E)	6.6 KV (E)	6.6 KV (UE)	11 KV	22 KV (E)	33 KV (E)	33 KV (UE)
Sectional Area	Unscreened	screened	ARM	/ 11 KV (E)	(UE)	ARM	ARM	ARM
(in Sq. mm)	ARM	ARM		ARM	ARM			
35	0.123	0.197	0.259	0.278	0.330	0.376	0.468	0.493
50	0.152	0.209	0.272	0.294	0.379	0.394	0.483	0.530
70	0.170	0.227	0.295	0.317	0.404	0.419	0.508	0.583
95	0.184	0.244	0.317	0.338	0.435	0.449	0.554	0.609
120	0.197	0.261	0.337	0.392	0.457	0.472	0.576	0.634
150	0.194	0.303	0.389	0.413	0.477	0.492	0.597	0.656
185	0.224	0.322	0.414	0.445	0.502	0.539	0.674	0.767
240	0.276	0.354	0.456	0.479	0.558	0.573	0.711	0.806
300	0.294	0.377	0.489	0.506	0.587	0.602	0.811	0.915
400	0.333	0.450	0.569	0.578	0.687	0.703	0.866	0.974
500	0.367	0.493	0.675	0.679	0.809	0.826	1.056	1.139
630	0.438	0.611	0.735	0.739	0.873	0.928	1.168	1.290
800	0.529	0.734	0.863	0.866	1.027	1.05	1.189	1.380
1000	0.648	0.880	1.031	1.035	1.138	1.158	1.402	1.619

Note: The above factors are for PVC and Zero Halogen low smoke (LSZH) and for PE factor, the above factor will be multiplied by 0.63

 501, Kakad Chambers
 P
 +91 22 2493 0532

 132, Dr. A. B. Road, Worli,
 F
 +91 22 2493 2705

 Mumba i 400 018
 E
 mumbai@ieema.org

 India
 W
 www.ieema.org

Effective from: 01 April 2023

IEEMA (PVC)/MV SCREEN CABLE/2019 (R-1)

TABLE : **H5** (a)

VARIATION FACTOR FOR Polymer (CCFAL/CCFCu)

SINGLE CORE UNARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal Cross	3.3 KV(E)	3.3 KV(E)	6.6 KV (E)	6.6 KV (UE)	11 KV	22 KV (E)	33 KV (E)	33 KV (UE)
Sectional Area	Unscreened	screened	ARM	/ 11 KV (E)	(UE)	ARM	ARM	ARM
(in Sq. mm)	ARM	ARM		ARM	ARM			
35	0.158	0.191	0.224	0.252	0.323	0.342	0.361	0.380
50	0.177	0.209	0.240	0.269	0.342	0.361	0.520	0.539
70	0.198	0.232	0.265	0.296	0.370	0.391	0.551	0.572
95	0.233	0.261	0.288	0.318	0.396	0.450	0.582	0.636
120	0.253	0.282	0.310	0.342	0.454	0.477	0.613	0.636
150	0.269	0.299	0.328	0.361	0.476	0.500	0.638	0.662
185	0.292	0.323	0.354	0.420	0.508	0.532	0.719	0.743
240	0.322	0.371	0.419	0.455	0.547	0.572	0.766	0.791
300	0.355	0.408	0.461	0.490	0.585	0.610	0.863	0.888
400	0.423	0.474	0.524	0.539	0.683	0.711	0.932	0.960
500	0.477	0.553	0.629	0.635	0.743	0.825	1.059	1.141
630	0.548	0.620	0.691	0.697	0.866	0.898	1.144	1.176
800	0.672	0.749	0.826	0.833	1.016	1.051	1.320	1.355
1000	0.789	0.877	0.964	0.964	1.099	1.200	1.488	1.589

Note: The above factors are for PVC and Zero Halogen low smoke (LSZH) and for PE factor the above factor will be multiplied by 0.63

TABLE : H5 (b) VARIATION FACTOR FOR POLYMER (CCFAI / CCFCu)

THREE CORE ARMOURED XLPE INSULATED 3.3 to 33 KV POWER CABLES WITH AI / Cu CONDUCTOR

Nominal	3.3 KV (E)	3.3 KV (E)	6.6 KV	6.6 KV	11 KV	22 KV	33 KV	33 KV
Cross	Unscreened	screened	(E)	(UE) / 11	(UE)	(E)	(E)	(UE)
Sectional	ARM	ARM	ARM	KV (E)	ARM	ARM	ARM	ARM
Area				ARM				
(in Sq. mm								
35	0.374	0.634	0.990	1.142	1.604	1.782	-	
50	0.445	0.702	1.119	1.260	1.834	2.046	2.864	3.070
70	0.547	0.863	1.290	1.396	2.011	2.284	3.219	3.380
95	0.594	0.990	1.440	1.647	2.269	2.428	3.367	3.721
120	0.732	1.214	1.692	1.877	2.498	2.715	3.646	4.020
150	0.812	1.355	1.906	2.061	2.767	2.931	3.927	4.216
185	0.960	1.589	2.086	2.406	3.028	3.180	4.166	4.529
240	1.130	1.832	2.484	2.744	3.398	3.580	4.589	4.917
300	1.219	2.201	2.912	3.161	3.840	4.016	5.029	5.325
400	1.313	2.561	3.530	3.664	4.353	4.666	5.736	5.911
500	1.652	3.138	3.925	3.971	4.621	4.878	5.913	6.625
630	1.949	3.774	4.487	4.982	5.225	5.477	6.696	7.445

Note: The above factors are for PVC and Zero Halogen low smoke (LSZH) and for PE factor the above factor will be multiplied by 0.63

